— fundamental equation of quantum mechanics, which describes the dynamic behavior of a quantum system in time and space. S. e. is: $$\operatorname{th} \frac{\partial \psi}{\partial t} \hat{H} \psi$$ where $\hat{H}$ — Hamilton operator (see. Hamiltonian) $\psi$ — wave function, $h=\dfrac{h}{2 \pi}$, $h$ — Planckn constant. S. e. stationary (time-independent) states is: $$\hat{H} \psi_{n}=E_{n} \psi_{n}$$ and determines the eigenvalues $E_{n}$ operator $\hat{H}$ and the corresponding eigenfunctions $\psi_{n}$. Established in $1926$, Austria. physicist Erwin Schrodinger $(1887 - 1961)$.